THE STRUCTURE AND MECHANISM OF BACTERIAL DIHYDROOROTASE A Dissertation by TAMIKO

نویسندگان

  • NEAL PORTER
  • Frank Raushel
  • Gregory Reinhart
  • Victoria DeRose
  • Paul Lindahl
  • Tamiko Neal Porter
چکیده

The Structure and Mechanism of Bacterial Dihydroorotase. (December 2004) Tamiko Neal Porter, B.S., Michigan State University Chair Advisory Committee: Dr. Frank Raushel Dihydroorotase (DHO) is a zinc metallo-enzyme that functions in the pathway for the biosynthesis of pyrimidine nucleotides by catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate. The X-ray crystal structure of the enzyme was obtained at a resolution of 1.7 Å. The pH-rate profiles for the hydrolysis of dihydroorotate or thio-dihydroorotate demonstrated that a single group of DHO must be unprotonated for maximal catalytic activity. The pH-rate profiles for the condensation of carbamoyl aspartate to dihydroorotate showed that a single group from the enzyme must be protonated for maximal catalytic activity. The native zinc ions within the active site of DHO were substituted with cobalt or CADmium by reconstitution of the apo-enzyme with divalent cations. The ionizations observed in the pH-rate profiles were dependent on the specific metal ion bound to the active site. Mutation of Asp-250 resulted in the loss of catalytic activity. These results are consistent with the formation of a hydroxide bridge between the two divalent cations that functions as the nucleophile during the hydrolysis of dihydroorotate. In addition, Asp250 is postulated to shuttle the proton from the bridging hydroxide to the leaving group amide during dihydroorotate hydrolysis. The X-ray crystal structure of DHO showed that the side-chain carboxylate of dihydroorotate is electrostatically interacting with Arg20, Asn-44 and His-254. Mutation of these residues resulted in the loss of catalytic activity, indicating that these residues are critical for substrate recognition. The thio-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of the dihydroorotase reaction.

Dihydroorotase (DHO) is a zinc metalloenzyme that functions in the pathway for the biosynthesis of pyrimidine nucleotides by catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate. A chemical mechanism was proposed on the basis of an analysis of the effects of pH, metal substitution, solvent isotope effects, mutant proteins, and alternative substrates on the enzyme-...

متن کامل

Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center.

Dihydroorotase plays a key role in pyrimidine biosynthesis by catalyzing the reversible interconversion of carbamoyl aspartate to dihydroorotate. Here we describe the three-dimensional structure of dihydroorotase from Escherichia coli determined and refined to 1.7 A resolution. Each subunit of the homodimeric enzyme folds into a "TIM" barrel motif with eight strands of parallel beta-sheet flank...

متن کامل

Determine folding mechanism of Lali structure, northern Dezful, Zagros, Iran

     Lali sub-surface structure, with a NW-SE Zagros trending is located in Dezful Embayment. To determine the folding mechanism, structural geometric parameters including limbs dip, amplitude, wavelength, and crestal length were determined in four stages during deformation. In order to investigate the lateral folding mechanism, these geometric parameters were analyzed in three parts in the Lal...

متن کامل

Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase.

The bacterial phosphotriesterase (PTE) from Pseudomonas diminuta catalyzes the hydrolysis of organophosphate esters at rates close to the diffusion limit. X-ray diffraction studies have shown that a binuclear metal center is positioned in the active site of PTE and that this complex is responsible for the activation of the nucleophilic water from solvent. In this paper, the three-dimensional st...

متن کامل

Vibration Mechanism of 13th Century Historical Menar-Jonban Monument in Iran

Abstract    Historical monument of Menar-Jonban (shaking tower) is located in the famous city of Isfahan in central Iran. Initial construction of this interesting and unique masonry monument belongs to 700 years ago. This monument has two vibrating circular towers of 7.5 m height. These towers are separated from each other by a distance of 9.2 m and constructed on top of an ancient tomb of 10 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004